Seismic Networks in Canada

Tim Côté
Canadian Hazards Information Service
Geological Survey of Canada (GSC)
Natural Resources Canada (NRCan)

Antelope Users Group meeting
San Diego, CA
January 14-16, 2015
Organization, Mandate and Clients

- Natural Resources Canada (NRCan) – federal government
 - Earth Sciences Sector
 - Geological Survey of Canada (GSC-AWCB)
 - Canadian Hazards Information Service (CHIS)
 - Earthquakes Canada (monitoring)
 - GSC Pacific Division
 - Public Safety Geoscience (research)
- CHIS does more than just earthquakes – Natural Hazards
- CHIS Mandate from the Emergency Management Act
 - “the provision of information on the actual or probable occurrence and intensity of earthquakes”.
- Clients:
 - Federal, provincial, and territorial Emergency Management Organizations (EMOs)
 - Critical Infrastructure (CI) operators
 - Media, Canadian public, researchers, other agencies
CHIS Earthquake Responsibilities

- Seismic Monitoring
- Collaboration with other agencies – data exchange
- Rapid Response for Earthquake Info
- Public Information
- Earthquake Hazard Assessment
 - Seismic hazard zoning maps
 - National Building Code
 - Advice for Critical Infrastructure
 - Hydro dams, Nuclear power plants
 - Pipelines, power transmission lines,
CHIS Seismology Staff and Budgets

- 4 offices (Ottawa, East Ottawa, Sidney, Yellowknife)

- 0.75 permanent seismologists + 2 contractors

- 4 Scientists (plus other researchers for on-call work)
 - building codes, magnitudes, explosion monitoring, infrasound

- 4 IT specialists

- 2 Operations staff

- 7.75 Field technicians

- ~$500k per year plus one time “capital” requests
 - In 2011, lost $750k/year + 3 IT staff to Shared Services Canada (consolidate IT data centres & communications)

- Salary costs not included
Haida Gwaii
M7.7 October 2012

Val-des-Bois
M5 June 2010
Seismic Networks

- Continuous, real-time, weak-motion data from:
 - Canadian National Seismograph Network (CNSN)
 - ~150 digital, observatory-grade, permanent stations
 - network > 20 years old
 - recently secured funding for network refreshment
 - Other special deployments within NRCan
 - ~40 (temporary) stations for research
 - University stations (ex-POLARIS stations)
 - ~30 (temporary) stations for research
- Strong motion monitoring
 - ~120+ stations in Canada
Primary equipment used in CNSN

- Digitizers designed in-house and use CNSN protocol – cnsn2orb
- ~40 CNSN SPD Vertical-only Short Period sampled at 100 s/s
 - S13 seismometers
- ~70 CNSN GD 3 Component Broadband sampled at 40 or 100 s/s
 - Guralp CMG 3ESP, 3T seismometers, STS1 seismometers
 - Various bandwidths 50Hz - 30s, 60s, 120s, 360s & NSN; 360s for STS1
- 3C BB Libra/Trident & Taurus digitizers (40 or 100 s/s)
 - ApolloServer seedlink connection; slink2orb to import into Antelope
 - hope to develop np2orb
 - Guralp CMG 3ESP and Nanometrics Trillium seismometers
 - Various bandwidths 50Hz - 60s, 100s (POLARIS standard), 120s
- Yellowknife array – 18 SP & 2 BB sites, upgraded to Guralp equipment
 - CTBTO primary seismic station
 - CD 1.1, use seiscomp3 to convert to seedlink to stream to antelope – slink2orb.
Strong Motion Monitoring

- ~100 Internet Accelerometers
 - ia2orb for data access
- Some Nanometrics Titan
 - At Libra or Taurus weak-motion sites
- ~20 Kinemetrics Altus Etna
 - Non-realtime

- Future – increase in strong motion stations, including co-located with weak motion stations
Acquisition of continuous, real-time CNSN data requires operation of a national telecommunications network (SeisWAN) involving:

- VSAT satellite links
- UHF/VHF radio
- spread-spectrum radio
- dedicated telephone/modem links
- cell modems
- T1 links
- Frame Relay links
- Internet (DSL)

- Heterogeneous on purpose!
- Mostly, but not all, IP-based
- ~60 Nanometrics Libra stations (satellite-based comms) in CNSN and ex-POLARIS use Carina Hub for master earth station and ApolloServer software for acquisition, which is then streamed to Antelope via SeedLink feed.
CHIS Data Centres

Two data centres: Ottawa, Sidney

- Will move to SSC data centres eventually
- Parallel, Independent Operation
 - Station data sent directly to each DC
 - Send data once by multicast or twice by unicast
- Redundant Systems & Communications
- Change control procedures
 - 2 man rule, in-house ticket tracking system, GIT for change control
- Operate on a 24x7 basis with on-call IT systems staff
- Legacy systems – Sparc/Solaris zones with in-house software
- New systems – Intel/Linux CentOS VMs with BRTT & Nanometrics software. Use Python, Perl and C.
CHIS Data Centres

- Acquire, process & archive over 5 GB/day of waveform data
- Waveform Archive (22+ TB) – separate from Antelope
 - Use `orb2wf` and `trexcerpt` for creating channel-day miniseed files
 - Want “true” miniseed files with gaps
 - Multiple passes – early, medium and late
 - All wf data is sync’d between data centres (smart merge)
 - For merging use `miniseed2db` & `trexcerpt`, or `miniseed2orb`
- National Earthquake DataBase (catalog), Ingres RDBMS moving to Postgres (Multi-master replication)
- Automatic and analyst reviewed processes to locate earthquakes
 - On-call Seismologist (1 east, 1 west) provide 24x7 coverage
Collaboration with Other Agencies – Data Exchange

- Forward real-time data from 10 IMS stations to CTBTO in Vienna (under contract with SLA’s)
- Disseminate Wave Form and Earthquake data to other agencies and researchers including:
 - Tsunami Warning Centres
 - USGS
 - IRIS
 - US Regional Networks
- Import and export via various formats
 - CD1.x, orb2orb, earthworm, seedlink, etc. Ringserver coming soon for export

- Earthquake Catalog
 - Sent to ISC when complete
 - Bulletins from US networks imported via Antelope
 - Working towards better real-time integration with USGS (PDL)
Rapid Response for Earthquake Info and Public Information

- 24x7 on-call seismologists provide rapid information on earthquake location, magnitude, aftershocks
- Earthquake reports, maps & lists @ www.earthquakescanda.ca, DYFI
- Tweet automatic and reviewed earthquake notifications on Twitter
 - English: @CANADAquakes, Français: @CANADAseisme
- AEneas (Automated Event Notification and Eq Alert Service)
 - Alerts Customized for client’s facilities and thresholds
 - sent via email, scp, SMS, ftp, fax
 - Eg: send “STOP/SLOW TRAINS” alerts to railways within minutes
- Earthquake alerts to Multi-Agency Situational Awareness System (MASAS) using open standards, e.g. Common Alerting Protocol (CAP)
 - sharing of location-based situational awareness information and alerts between issuers, first responders & emergency management agencies
Processing System

- **Legacy Data Processing System** – developed in-house
 - acquisition → detection → autoloc → alert
 - archive → review → database → publish

- **Current Antelope 4.x System** – all on one computer

- **New Antelope 5.4 System** – partially implemented
 - acquisition → hub → Automatic processing
 - Antelope wf archive → review
 - Permanent archive
 - National Earthquake database

- *Orb for waveform*
- *Separate Orb for other data (e.g. parametric)*
- *Dbmaster on select zones*
What We Need to Do

- Improve data import from Guralp and Nanometrics digitizers (e.g. np2orb), and handle SOH
- Switch Eastern seismologists to Antelope for review
 - If we ever hire new staff
- Upgrade to latest version of Antelope across the country
- Fully implement automatic locations and alerting
- Feed Shakemap for project with PSG and universities
- Integrate with USGS NEIC PDL
- Continue experimenting with Peregrin (chanstats2json)
- Finish implementing webservices for wf data
- Implement Network refreshment
Network Refreshment - 1

- ~$11.4M CDN + overhead over 5 years
 - Started April 2014, money flows April 2016
 - Cash only, no new on-going funding for O&M
 - Shared Service Canada (SSC) not involved, therefore
 - No new data centre hardware or funding
 - No changes in telecommunications (ouch!)

- This is not meant to be an upgrade of network capability, but a refreshment of end-of-life equipment
 - Exception for additional strong motion (SM) sensors
 - Exception for faster auto-locations
Network Refreshment - 2

- About 150 weak motion (WM) stations to be refreshed
 - Includes sensors and digitizers
 - Probably upgrade all short period vertical to 3C BB
 - May add strong motion (SM) to some or all WM stations
 - No new WM stations (except for special cases)
 - Request for 30 new Arctic stations rejected
- Can add about 40 new, targeted, stand-alone SM sites
- Some investment for GPS sites (~10)
Network Refreshment - 3

- Money to upgrade civil works at about 10% of sites
 - But ~40 existing SP Vertical sites need new vaults
 - May want to consider shallow (~2-4 m) postholes
 - Reduce site noise and thermal instability
 - Cheaper than surface vault civils? Bias?
- Communications dilemma
 - Extra bandwidth needed, but might not be available:
 - 1 or 3 channels changing to 3 or 6 channels
 - Modern protocols have more overhead than CNSN
 - Serial changing to IP; IP and UDP/TCP overhead
 - SOH data
 - Might need to reduce sample rate or use triggered
- Which data format and telemetry protocol?
Goal to reduce auto-locations from ~4 minutes to ~1 minute in targeted regions
- Money for software and/or software development
- May change acquisition and/or processing software
- Not required to provide Earthquake Early Warning (EEW) system, but must be compatible with one
 - Separate funding request pending
- Need to improve QC and procedures (e.g. SQLX)
- One big integrated tender or multiple tenders?
 - e.g. separate seismometer and digitizer orders
 - What do other agencies do?